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ABSTRACT 
 

We develop two simple test problems which quantify the behavior of computational transport 
solutions in the presence of boundary layers that are not resolved by the spatial grid.  In particular 
we study the quantitative effects of “contamination” terms that, according to previous asymptotic 
analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite 
element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary 
layers caused by azimuthally asymmetric incident intensities.   Few numerical results have 
illustrated the effects of this contamination, and none have quantified it to our knowledge.  Our 
test problems use leading-order analytic solutions that should be equal to zero in the problem 
interior, which means the observed interior solution is the error introduced by the contamination 
terms.  Results from DFEM solutions demonstrate that the contamination terms can cause error 
propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this 
error is much worse for non-orthogonal grids.  This behavior is consistent with the predictions of 
previous analyses.  We conclude that these boundary layer test problems and their variants are 
useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive 
transport problems. 
 
Key Words:  Asymptotic Diffusion Limit Analysis, Deterministic Transport, Boundary Layer, 
Finite Element Methods, Characteristic Methods  

 
 

1. INTRODUCTION 
 

Diffusion-limit asymptotic analysis has been a powerful tool for understanding the suitability of 
discretizations for the linear Boltzmann transport equation when applied to thick, diffusive 
problems.  Much analysis and many test problems have demonstrated that Discontinuous Finite 
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Element Methods (DFEM) with properly chosen weight and basis functions and Characteristic 
Methods (CM) with properly chosen spatial moments and source approximations will produce 
leading-order solutions that satisfy reasonable diffusion discretizations in the interior of diffusive 
problems, which is the desired behavior.  However, the analysis also shows that the boundary 
conditions satisfied by these leading-order solutions may be inaccurate if the spatial grid does not 
resolve boundary layers.  For standard, upwind DFEMs and CMs, the effective boundary 
condition can be written in terms of two components.  The first component is a good 
approximation of the boundary condition satisfied by the analytic (exact) leading-order solution. 
The second component is a “contamination” term that is zero if the incident intensity is 
azimuthally symmetric about the local normal.  Very little work has been done to quantify or 
understanding the effect of such contamination terms from boundary cells for DFEMs in the 
diffusion limit.  We have developed simple test problems to help us quantitatively study the 
effects of boundary contamination terms.  We have used Capsaicin, a transport code developed at 
LANL, to produce results from standard DFEMs for these test problem. 

 
2. BACKGROUND 

 
A diffusion-limit asymptotic analysis can illuminate connections between the analytic transport 
equation and the analytic diffusion equation [1,2].  We summarize the main conclusions of this 
analysis in the simple setting of one energy group and steady state.  All of the analysis in this 
section is derived from previous work.  We do not claim to add any new insight to this analysis; 
however, we attempt to accurately summarize and clarify the boundary layer analysis for general 
DFEMs. 

 
The steady state transport equation is scaled to be optically thick and diffusive: 
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We postulate that the solution,  r 
, to this scaled equation is a power series in . 
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From Eq. (1) and (2), for the analytic transport equation, we find that the leading-order angular 
flux is isotropic and satisfies a diffusion equation in the interior of the spatial domain. 
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Eq. (3) is not a well-posed mathematical problem without appropriate boundary conditions for 
the leading-order solution.  We consider Eq. (3) to be a statement of the leading-order solution’s 
behavior in the interior of the problem.  From the diffusion limit asymptotic analysis of the 
analytic transport equation, the appropriate boundary condition for the leading-order solution is 
[1] 
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Here n


 is the outward unit normal at the boundary point r


. 
 

One utility of the analysis of the analytic transport equation is to compare it against the results 
from the same diffusion-limit analysis applied to a discretized version of the transport equation.  
In order for a transport discretization to accurately represent the physical solution for a optically 
thick and diffusive problem, its leading-order solution for cells interior to the problem must 
satisfy a reasonable discretization of the diffusion equation, and its discretization of the boundary 
cells must accurately approximate the boundary conditions given in Eq. (4).  For this paper, we 
assume that the angular discretization applied to the equation is the well-known discrete 
ordinates (SN) discretization, and we focus on the results from the family of general, upwind 
DFEM spatial discretizations. 
 
Demonstrating that appropriately defined DFEMs and CMs lead to valid discretized diffusion 
equations in the interior has been the goal of several studies, which have utilized both analysis 
and numerical test problems. [5-12]  However, the effect of unresolved boundary layers has 
received much less attention [5,7], and the conclusions that exist give reason for concern that 
inexact numerical treatment of the boundary layer may produce significant inaccuracies.  To 
summarize the analysis of the discretized transport equation we follow Adams’s asymptotic 
analysis of DFEMs for the boundary term [5].  Adams shows that the boundary conditions affect 
the leading-order solution via a discrete Fick’s-Law equation that comes from taking the zeroth 
and first angular moment of the O() equation.  From Adams, we recall Eq. (98), which is 
derived from the zeroth angular moment of the O() equation. 
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This equation is a balance equation and does not directly include the effect of boundary 
conditions.  We also recall Eq. (106) from Adams, which is the first angular moment of the O() 
equation with an erroneous “+” superscript corrected to “–“: 
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where 
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Eq. (6) is generalized for boundary cells, and therefore does include the effects of boundary 
conditions.  Essentially, Eqs. (5) and (6) represent a system of two equations with two 

unknowns:     1J r
 

 and  0 .  We can solve Eq. (6) for    1J r
 

 in terms of  0 , and substitute 

this result into Eq. (5) to produce a discretized diffusion equation satisfied by  0 .  The 
divergence theorem replaces the wki-weighted integral of the gradient with three terms: a volume 
integral involving kiw , a surface integral for problem-interior surfaces, and a surface integral 

for problem-boundary surfaces.  It is important to note that the “problem” may be a diffusive 
region in a larger problem.  We will use this idea in the development of a test problem that 
approximates a real physical system. Also, a symmetric quadrature set is assumed throughout the 
analysis and test problem development.  Because all boundary conditions are confined in the first 
line of Eq. (6), we will use these terms for the basis of most of our discussion. 
 
We begin the discussion of the boundary layer analysis by examining the problem-boundary 
term for one cell surface (Eq. (118) from Adams and the first line in Eq. (6)): 
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(For simplicity we have assumed that each cell surface on the problem boundary is planar, which 
allows the unit normal to move outside the spatial integral.)  The analytic analog of this 
boundary term is developed by multiplying Eq. (4) by the DFEM weight function, wki, and 
integrating over the surface.  The integral over direction is approximated with a discrete-
ordinates quadrature sum, resulting in what Adams calls the ideal term (Eq. (117) from Adams). 
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The best DFEMs, even in 1D slab geometry, do not achieve the ideal term shown here.  
However, the best DFEMs do achieve an excellent approximation to the ideal term, which we 
refer to as “DFEM-ideal:” 
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This is the ideal term except that the W function has been replaced by a quadratic polynomial 
that is known to be accurate to within a few percent [1].  This DFEM-ideal term is the standard 
to which we will compare the actual DFEM term. 
 
When examining the zeroth moment of the O(1) equation in the asymptotic analysis, Adams 
derived an expression for the leading-order scalar flux on the boundary (Eq. (77) from Adams): 
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Substituting this expression into Eq. (10) results in 
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We note that 
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Here m


 is the tangential component of the direction vector m


.  Substituting these definitions 

into Eq. (12) results in 
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We simplify Eq. (14) to contain an ideal component and a contamination component. 
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The first line of Eq. (15) is the ideal term found in Eq. (10).  This DFEM-ideal term is dependent 
on the quadrature order through the klfactor.  As kl approaches 1, the DFEM-ideal term better 
approximations the analytic term in Eq. (9).  Table I lists kl values for the standard level 
symmetric quadrature set.  
 

Table I.  kl for the Level Symmetric Quadrature set 
 

SN Order kl

2 1.15470054 
4 1.04595510 
6 1.02648088 
8 1.01702734

10 1.01271533

12 1.00974740 
14 1.00801134 
16 1.00662993 
18 1.00572395 

 
The second line of Eq. (15) is the tangential “contamination” term, the boundary term whose 
quantitative effects we would like to explore with suitable test problems.  This contamination 
term is naturally mitigated in multiple ways.  If the tangential component of the incident flux is 
isotropic and the quadrature set is symmetric, the contamination term is zero.  This property is 
obvious from Eq. (15).  The positive values of the tangential angles cancel with the negative 
values.  Furthermore, the contamination term affects the solution through a dot product of the 

gradient of a weight function and the first-order current,    1J r
 

, which is easy to see from Eqs. 

(5) and (6). 
 
It is important to not confuse the contamination term with a Marshak boundary condition.  Recall 
that DFEM solutions have one unknown per vertex in each cell.  Larsen and Morel [4] 
demonstrated that in the thick diffusion limit, for cells on the boundary of the thick region 
DFEMs will have solutions that are equivalent to a Marshak boundary conditions for unknowns 
whose vertices are adjacent to the physical boundary, and a different boundary condition value 
for the other vertices in the cell.  This different boundary condition is consistent with the 
boundary terms we have been defining in Eq. (7).  These interior boundary conditions are what 
define the leading-order boundary conditions for the interior diffusion solution, and are the 
vertices which may contain the contamination term in the discretized boundary layer. 

 
3. TEST PROBLEM DESCRIPTION 

 
We have shown in Eq. (15) that a DFEM discretization of the boundary cells results in a two-
term expression for the discretized solution in the boundary cells.  The first term is a good 
approximation of Eq. (4).  The second term is a tangential contamination term that vanishes if the 
incident intensity has sufficient azimuthal symmetry that the discrete half-range integral in the 
last term of Eq. (15) equals zero. (For example, 180-degree rotational symmetry in the azimuthal 
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angle is sufficient to make the term vanish.)  Otherwise the contamination term persists.  We 
have developed two test problems that explore the error caused by the boundary layer 
contamination term. 

3.1  Test Problem 1:  Rigorously Zero Solution Test Problem 

 
Our first test problem is designed such that the leading order scalar flux goes to zero everywhere 
in the problem for orthogonal grids except for the boundary zones next to a non-zero incident 
angular flux Dirichlet boundary condition.  To derive these conditions, we simply set the leading 
order flux in Eq. (10) to zero. 
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If we enforce this condition along the entire boundary, for a problem that is optically thick and 
highly scattering, and include no other sources in the problem, than this boundary condition will 
lead to a leading-order interior solution that is zero for orthogonal grids.  The leading-order 
solution should be zero for orthogonal grids because the boundary layer contamination terms, 
which affect the first order current, will cancel each other out along the boundary through the dot 
product of the current and the gradient of the weight functions.  However, we will observe some 
propagation of the contamination term on a non-orthogonal grid because the components of this 
dot product are not guaranteed to cancel each other in the boundary layer.  As a result, this test 
problem will be useful for observing how far the contamination term can numerically diffuse into 
the interior solution.  To measure this numerical diffusion, we simply plot the deviation of the 
scalar flux from zero in the problem interior. 
 
For this problem, we define an incident angular flux in terms of a tangential direction only. This 
incident flux will be the only source of particles in the problem.  We derive this boundary 
condition for 2D XY transport, and use standard direction cosine notation. 
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We use the definition of the “manufactured” incident angular flux in Eq. (16) to determine 
coefficients for inc that lead to a value of zero for the leading-order boundary condition to the 
interior leading-order diffusion discretization. 
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The summation associated with the b term is zero because it is odd with respect to m.  As a 
result, we can find values of a and d that to satisfy Eq. (16). 
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This test problem can also be discussed in terms of the analytic ideal boundary term from Eqs. 
(4) and (9).  We express the manufactured solution for inc in a non-discrete form 
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To define the coefficients of this angular flux such that the leading-order angular flux will be 
zero, substitute Eq. (20) into Eq. (4), using the approximation for W, then set the expression 
equal to zero. Again, the integral associated with the b coefficient will automatically be zero.  As 
a result, we can define a and d such that leading-order scalar flux is zero: 
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 (21) 

We can use the results from Eqs. (19) and (21) to draw some simple conclusions about errors due 
to quadrature order.  The coefficients in front of d should be equivalent.  Table II contains the 
value of this coefficient for different orders of the level symmetric quadrature set.  A sufficiently 
accurate quadrature set will match the value of 0.225, and as the quadrature order increases, this 
coefficient should approach this value. 
 

Table II.  Test Problem 1 Coefficient for the Level Symmetric Quadrature set 
 

SN Order Coefficient
2 0.33333333 
4 0.23180627 
6 0.22865891 
8 0.22725946 
10 0.22666166 
12 0.22625939 
14 0.22602887 
16 0.22584719 
18 0.22572917 

 

It is important to note that, in 3D, the definition of the test problem given in Eq. (19) and Eq. 
(21) is invariant for  and .  The coefficients resulting from the integration are the same in both 
cases. 
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3.2.  Test Problem 2:  Error Magnitude for the Boundary Layer Contamination Term 

 
We have developed the second test problem for two reasons.  First, Test Problem 1 only 
develops a shape for the error due to the contamination term on non-orthogonal grids.  The 
second test problem will better quantify the magnitude of this error, and will be applicable to 
studying the contamination term on orthogonal grids.  Second, we want to connect the effect of 
the contamination term to reality, so we have developed a thick, diffusive test problem that is 
connected to a simplified, but reasonable physics simulation. 
 
The basic manufactured solution for Test Problem 2 is a one-term expression for inc, where inc 
is defined with three, slightly different dependencies on .  We summarize these definitions in 
Table III, and note that this discussion assumes we are interested in the leading-order solution in 
the thick, diffusive limit.  The Ideal interior solution is the solution for the leading-order flux 
given a DFEM-ideal term (Eq. (10)) for the interior boundary condition. 
 

Table III.  Summary of inc cases for second boundary layer manufactured solution 

 

Case inc 
DFEM 

boundary term 
Contamination 

term 

Ideal 
interior 
solution 

Actual interior 
solution 

1 , ma   Non-Zero Zero Non-zero Ideal 

2 
, 0

, 0
m

m

a

a





 
 Zero 2a  Zero 

Ideal + 
Contamination 

3 
2 , 0

0 , 0
m

m

a 



 

 Non-Zero 2a  Non-zero, 
= Case 1 

Ideal + 
Contamination 

 
 
Case 3 is a numerical test problem that describes the types of boundary layers that exist in a 
simplified physics simulation.  This simplified physics problem, shown in Figure 1, consists of a 
thin region next to a thick region with an incident angular flux on the minimum y face of the 
problem.  At the boundary between the thin and thick region, this incident flux will cause the 
boundary layer effect described in Case 3.  The spatial definition of Case 3, with is prescribed 
boundary conditions, can also be found in Figure 1. 
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Because the ideal interior solution for Case 3 and Case 1 are equivalent, but the actual interior 
solution of Case 3 is the ideal solution with the contamination effect, we can use the difference 
between Case 3 and Case 1’s actual solutions to find the error due to contamination.  
Furthermore, we observe that Case 1 + Case 2 will yield Case 3 due to superposition.  As a 
result, the solution of Case 2 is the error due to contamination in Case 3, and Case 1 provides a 
reference solution to understand the magnitude of that error.  We only need solutions to Case 1 
and Case 2 to quantify the error due to the boundary layer contamination term for an 
approximate physical problem. 
 
For this test problem, we recommend that the non-zero incident angular flux only be specified 
for a few cells above and a fell cells below the geometric center point of the problem boundary.  
This spatially discontinuous boundary condition will prevent the cancellation of contamination 
terms through the dot product operation.  We should observe error in both orthogonal and non-
orthogonal grid cases. 

3.3.  Summary of Test Problems 

 
We have developed two test problems to explore the contamination term that arises in the 
boundary layer analysis of DFEMs.  The first test problem uses an incident angular flux to 
produce an interior leading-order solution that is rigorously zero if the DFEM boundary layer 

Figure 1.  Simplified Physics Problem that leads to Case 3 of Test Problem 2 

Simplified Physics Problem 
Goal is to derive a numerical test 

problem from this physics problem 

Numerical Test Problem 
Case 3 mimics thick region in 

simplified physics problem 

 Thin Region Thick Region


inc(m) 

Boundary layer from 
tangential inc 

y

x

  Thick Region 


in

c(
m
) 
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term is not influenced by the contamination term.  We apply this boundary condition at every 
point along the boundary.  As a result, we expect a DFEM to produce this zero leading-order 
scalar flux on an orthogonal grid when the material properties cause the problem to be 
sufficiently thick and diffusive.  We can use this problem to explore errors due to grid distortion 
as well as unresolved quadrature sets.  The limitation of this test problem is that it will show the 
shape of the error from the contamination term, but it does not allow us to quantify the 
magnitude of the error compared with an exact solution. 

 
The second family of test problems is more powerful because it allows us to find a magnitude 
(Case 1) and shape (Case 2) of the error due to the contamination term.  This test problem also 
has a physically meaningful interpretation (Case 3).  We use the concept of superposition to 
separate out the magnitude and shape of the error. 

 
4. RESULTS 

 
We ran these two test problems using Capsaicin, a radiation transport research code being 
developed at Los Alamos National Laboratory [13].  These problems were run using the 2D XY 
Fully Lumped Bi-linear Discontinuous Finite Element spatial discretization, which has been 
shown to recover the diffusion limit both analytically and numerically [5]. 

4.1  Results for Test Problem 1 

 
We first ran this test problem with decreasing values of  to show that as the problem becomes 
sufficiently thick and diffusive ( 0   ), it converges.  This -scaling procedure was introduced 
by Warsa et al. [14] as a mechanism to numerically determine if an SN discretization will succeed 
in the thick diffusion limit.  Parameters for the scaling of Test Problem 1, are found in Table 
III, where the total and absorption cross sections are multiplied by 2n (1/ and 1/2n (, 
respectively. 
 

Table III.  Test Problem 1 Parameters 
 

Parameter Value 
a (coefficient for ) -14.45422016 

b(coefficient for ) 0.0 

d (coefficient for ) 64.0 
Total Cross Section 1*2n

Absorption Cross Section 0.5/2n

Quadrature Set S16, Level Symmetric 

Boundary conditions 

Left:  Incident Flux 
Top:  Reflecting 

Bottom:  Reflecting 
Right:  vacuum 

Tolerance 1E-12, relative error 
Acceleration DSA preconditioned GMRES 
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The results for the -scaling of Test Problem 1 are found in Figure 2 (orthogonal grid) and Figure 
3 (non-orthogonal, randomized grid).  This problem was run with a 64x64 mesh.  The non-
orthogonal grid was created by randomizing the vertices of the orthogonal grid.  We plot the cell-
averaged scalar flux for interior cells at a cut line through the cells just above y=2 for values of 
n=10 through n=20.   

For the orthogonal grid solution in Figure 2, the solution appears to be converging up to n=17, 
then becomes unstable for n>17 (very large ).  However, we believe that this behavior is not a 
lack of convergence, but a demonstration of round-off error accumulation due to lack of machine 
precision.  Warsa, et.al. [14] noted this same behavior, and, coincidentally, found they needed to 
add precision at n=18.  As a result, we will use a value of n=17 in the remainder of our results.  
Figure 3 demonstrates that the non-orthogonal grid case is converging with respect to , and it is 
converging to a non-zero solution. We believe that we do not have the same problem with 
machine round-off for the non-orthogonal case because the solution is non-zero, and round-off 
errors have a much smaller effect on non-zero solutions than zero solutions.  This non-zero 
solution for the non-orthogonal grid case is the effect of the contamination term for interior cells. 
In Figure 4, we show the 2D cell-averaged scalar flux for both the orthogonal and non-
orthogonal grid.  The contours in these plots are on a log scale and represent the absolute value 
of the scalar flux.  It is important to note that Test Problem 1 demonstrates that the contamination 
term is pronounced in the non-orthogonal grid case, but we need test problem 2 to determine its 

 

Figure 2.  Results of -scaling for Test Problem 1 on an orthogonal grid 
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potential magnitude.  It is also important to note that, in Figure 4, we observe a very small 
amount of contamination for the orthogonal grid case. 

 

 

 

Figure 3. Results of -scaling for Test Problem 1 on an orthogonal grid 

 

Figure 4. Test Problem 1 Cell-Averaged Scalar flux for Orthogonal and Non-orthogonal 
Grids 
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4.2 Results for Test Problem 2 

 

The second test problem only requires a single coefficient value.  We use a =1.0, apply the 
boundary condition on the minimum x face of the problem domain for two zones above and 
below the y-midpoint, and use the same physical constants from Table III.  We run this problem 
on the orthogonal and non-orthogonal grids used in Test Problem 1, and shown in Figure 4. 

 
For orthogonal grids, the result for Case 1 and Case 2 is show in Figure 5.  The pseudocolor plots 
of the flux are on linear scale, and the contour plots are on a log scale.  It is easy to see that the 
error is largest near the boundary and rapidly decreases inside the problem interior.  It is also 
interesting to note that the error is the negative mirror image at the y-midplane in the problem.  
This behavior is due, again to the propagation of the contamination term via the current through 

cell edges. 
 

Because we know the solution magnitude and the error due to the contamination term, we also 
plot a relative error, which is defined as 

 2

1

Case

Case

Error
E

Magnitude




   (22) 

The relative error for the orthogonal grid case is found in Figure 6.  It is easy to see that the 
relative error, which is the error in the simulation due to the contamination term, is reasonable 
small, and quickly decreases away from the boundary.  This result is important because we have 
demonstrated that, although a contamination term exists, we have proof that it is a small source 
of error in the overall solution. 

 

Figure 5.  Results for Test Problem 2 on an Orthogonal grid; Case 1:  Solution Magnitude 
(left); Case 2:  Solution Error Magnitude (right) 
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We replicate the plots in Figure 5 and Figure 6 for non-orthogonal grids.  These results are 
shown in Figure 7 and Figure 8.  The grid distortion changes the shape of the contour plots.  The 
relative error is no longer symmetric and it propagates into the problem interior significantly 
farther than the orthogonal grid case.  Also, the error is non-trivially larger on the non-orthogonal 
grids. 

 

 

Figure 6.  Relative Error for Test Problem 2 on an Orthogonal Grid 

 

Figure 7. Results for Test Problem 2 on a Non-orthogonal grid; Case 1:  Solution 
Magnitude (left); Case 2:  Solution Error Magnitude (right)  
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5. CONCLUSIONS 

 
We have developed boundary layer test problems in the thick diffusion limit to test the effect of 
the contamination terms that arise in the boundary layer asymptotic thick diffusion limit analysis 
for both DFEMs and CMs.  The first test problem is designed to produce numerically correct 
behavior for orthogonal grids i.e.  the contamination terms are cancelled out due to the regularity 
of the grid and the applied boundary condition.  This first test problem is useful for code 
verification as well as examining the contamination term effect for non-orthogonal grids.  We 
applied Warsa’s -scaling methodology to this problem and found that the orthogonal grid case 
did not converge.  We attribute this lack of convergence to machine precision issues, and note 
that round-off errors will be exacerbated because the solution is converging to zero. 
 
The second test problem is designed to be an approximation of a simplified physics problem.  
This test problem allows us to solve for a solution magnitude and solution error due to the 
contamination term.  We use these parameters to define a relative error that is useful for 
understanding the overall effect the contamination term can have in a real simulation. 
 
We have applied these test problems to the fully lumped BLD method using the LANL’s 
Capsaicin code.  Both test problems have shown that the contamination terms do propagate into 
the solution, and that the errors are markedly worse for non-orthogonal grids.  We were also able 
to numerically determine the relative error of this effect using Test Problem 2. 
 

 

Figure 8. Relative Error for Test Problem 2 on a Non-orthogonal Grid 
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The utility of these test problems to other methods and geometries has not yet been fully 
explored.  We have many suggestions for future work. 
 

 Explore the effect of round-off errors for Test Problem 1 
 Examine the CM boundary layer analysis and apply these test problems to CMs in order 

to compare the accuracy of DFEMs and CMs 
 Apply these test problems to a variety of lumping schemes in the general DFEM 

framework. 
 Apply these test problems in 3D Cartesian, and 2D RZ geometries 
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